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Abstract

In this paper, we introduce a Stancu type generalization of modified Jain-Baskakov operators
with parameter c. We studied some direct results in ordinary approximation. Also, the rate
of convergence in terms of the modulus of continuity and weighted approximation by these
operators are studied. Lastly, we give better estimations of the above operators using King
type approach.

2010 Mathematics Subject Classification. 41A25. 26A15, 40A35
Keywords. Jain operators, Baskakov operators, rate of convergence, modulus of continuity, weighted approximation.

1 Introduction

In 2014, Patel and Mishra [32] introduced modified Jain-Baskakov operators as follows

Kβn,c(f ;x) =
(n− c)
c

∞∑
v=1

ωβ(v, nx)

∫ ∞
0

pn,v−1,c(t)f(t)dt+ e−nxf(0), (1.1)

where

pn,v−1,c(t) = c
Γ(n/c+ v − 1)

Γ(v)Γ(n/c)
.

(ct)v−1

(1 + ct)n/c+v−1
(1.2)

and

ωβ(v, nx) = nx(nx+ vβ)v−1
e−(nx+vβ)

v!
, (1.3)

and β ∈ [0, 1), f ∈ C[0,∞). Some approximation properties of these operators were given in [14].
As a special case, i.e., c = 1, the operators (1.1) reduced in Jain-Baskakov operators which is defined
in [32].

In [28], Stancu introduced the positive linear operators P
(α,γ)
n : C[0, 1]→ C[0, 1] by modifying the

Bernstein polynomial as

P (α,γ)
n (f ;x) =

n∑
k=0

bn,k(x)f

(
k + α

n+ γ

)
,

where bn,k(x) =
(
n
k

)
xk(1 − x)n−k, x ∈ [0, 1] is the Bernstein basis function and α, γ are any two

real numbers which satisfy the condition that 0 ≤ α ≤ γ.
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Motivated by his work, the Stancu type modification of many sequences of linear positive operators
has been considered and studied (see [1], [7], [15], [17] [32], [34] etc.).
For f ∈ C[0,∞), 0 ≤ α ≤ γ we introduce the following Stancu type generalization of the operators
(1.1):

Kα,γn,c,β(f ;x) =
(n− c)
n

∞∑
v=1

ωβ(v, nx)

∫ ∞
0

pn,v−1,c(t)f

(
nt+ α

n+ γ

)
dt+ e−nxf

(
α

n+ γ

)
(1.4)

For α = γ = 0, we denote Kα,γn,c,β(f ;x) by Kβn,c(f ;x).
The aim of this paper is to study the basic convergence theorem, Voronovskaja type asymptotic
result, rate of convergence, weighted approximation and pointwise estimation of the operators (1.4).
Further, to obtain better approximation, we also propose modification of the operators (1.4) using
King type approach.

2 Moment estimates

Lemma 2.1. [14] For n > 3c, we have

1. Kβn,c(1;x) = 1;

2. Kβn,c(t;x) =
nx

(n− 2c)(1− β)
;

3. Kβn,c(t2;x) =
n2

(n− 2c)(n− 3c)

[
x2

(1− β)2
+
x(2− 2β + β2)

n(1− β)3

]
.

Lemma 2.2. For the operators Kα,γn,c,β(f ;x) as defined in (1.4), the following equalities holds for
n > 3c

1. Kα,γn,c,β(1;x) = 1;

2. Kα,γn,c,β(t;x) =
n2x+ α(n− 2c)(1− β)

(n+ γ)(n− 2c)(1− β)
;

3. Kα,γn,c,β(t2;x) =

{
n4

(n− 2c)(n− 3c)(n+ γ)2(1− β)2

}
x2+

{
n3 + 2αn2(n− 3c)(1− β)2

(n− 2c)(n− 3c)(n+ γ)2(1− β)3

}
x

+
α2

(n+ γ)2
.

Proof. For x ∈ [0,∞), in view of Lemma 2.1, we have

Kα,γn,c,β(1;x) = 1.

Next, for f(t) = t, again applying Lemma 2.1, we get

Kα,γn,c,β(f ;x) =
(n− c)
n

∞∑
v=1

ωβ(v, nx)

∫ ∞
0

pn,v−1,c(t)

(
nt+ α

n+ γ

)
dt+ e−nx

(
α

n+ γ

)
=

n

n+ γ
Kβn,c(t, x) +

α

n+ γ
=
n2x+ α(n− 2c)(1− β)

(n+ γ)(n− 2c)(1− β)
.
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Proceeding similarly, we have

Kα,γn,c,β(f ;x) =
(n− c)
n

∞∑
v=1

ωβ(v, nx)

∫ ∞
0

pn,v−1,c(t)

(
nt+ α

n+ γ

)2

dt+ e−nx
(

α

n+ γ

)2

=

(
n

n+ γ

)2

Kβn,c(t2, x) +
2nα

(n+ γ)2
Kβn,c(t, x) +

(
α

n+ γ

)2

=

{
n4

(n− 2c)(n− 3c)(n+ γ)2(1− β)2

}
x2 +

{
n3 + 2αn2(n− 3c)(1− β)2

(n− 2c)(n− 3c)(n+ γ)2(1− β)3

}
x

+
α2

(n+ γ)2
.

q.e.d.

Lemma 2.3. For f ∈ CB [0,∞) (space of all bounded and continuous functions on [0,∞) endowed
with norm ‖ f ‖= sup{|f(x)| : x ∈ [0,∞)}), ‖ Kα,γn,c,β(f ;x) ‖≤‖ f ‖.

Proof. In view of (1.4) and Lemma 2.2, the proof of this lemma easily follows. q.e.d.

Remark 2.4. For n > 3c, we have

Kα,γn,c,β ((t− x);x) =

(
(n+ γ) (nβ + 2c(1− β))− nγ

(n+ γ)(n− 2c)(1− β)

)
x+

α

n+ γ
,

= µα,γn,c,β(x), (say)

and

Kα,γn,c,β
(
(t− x)2;x

)
=

{
n4 + (n− 3c)(n+ γ)(1− β)((n− 2c)(n+ γ)(1− β)− 2n2)

(n− 2c)(n− 3c)(n+ γ)2(1− β)2

}
x2

+

{
n3 + 2α(1− β)2(n− 3c)(n2 − (n− 2c)(n+ γ)(1− β))

(n− 2c)(n− 3c)(n+ γ)2(1− β)3

}
x

+
α2

(n+ γ)2
,

= ξα,γn,c,β(x), (say).

3 Main results

Theorem 1. (Voronovskaja type theorem) Let b > 0 and βn ∈ (0, 1) such that nβn → l ∈ R as
n→∞. Then for every f ∈ C[0, b], f ′, f ′′ exists at a fixed point x ∈ (0, b), we have

lim
n→∞

n
(
Kα,γn,c,βn(f ;x)− f(x)

)
= (α+ (γ + l + 2c)x)f ′(x) +

x(2(1 + α) + cx)

2
f ′′(x).

Proof. Let x ∈ (0, b) be fixed. From the Taylor’s theorem, we may write

f(t) = f(x) + (t− x)f ′(x) +
1

2
f ′′(x)(t− x)2 + r(t, x)(t− x)2, (3.1)
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188 A. Kumar, L. N. Mishra

where r(t, x) is the peano form of the remainder and lim
t→x

r(t, x) = 0.

Applying Kα,γn,c,βn(f, x) on both sides of (3.1), we have

n
(
Kα,γn,c,βn(f ;x)− f(x)

)
= nf ′(x)Kα,γn,c,βn ((t− x);x) +

1

2
nf ′′(x)Kα,γn,c,βn

(
(t− x)2;x

)
+nKα,γn,c,βn

(
(t− x)2r(t, x);x

)
.

In view of Remark 2.4, we have

lim
n→∞

nKα,γn,c,βn ((t− x);x) = α+ (γ + l + 2c)x (3.2)

and

lim
n→∞

nKα,γn,c,βn
(
(t− x)2;x

)
= x(2(1 + α) + cx). (3.3)

Now, we shall show that

lim
n→∞

nKα,γn,c,βn

(
r(t, x)(t− x)2;x

)
= 0

By using Cauchy-Schwarz inequality, we have

Kα,γn,c,βn

(
r(t, x)(t− x)2;x

)
≤

(
Kα,γn,c,βn(r2(t, x);x)

)1/2 (
Kα,γn,c,βn((t− x)4;x)

)1/2
. (3.4)

We observe that r2(x, x) = 0 and r2(., x) ∈ C[0, b]. Then, it follows that

lim
n→∞

Kα,γn,c,βn(r2(t, x);x) = r2(x, x) = 0, (3.5)

in view of fact that Kα,γn,c,βn((t− x)4;x) = O

(
1

n2

)
.

Now, from (3.4) and (3.5) we obtain

lim
n→∞

nKα,γn,c,βn
(
r(t, x)(t− x)2;x

)
= 0. (3.6)

From (3.2), (3.3) and (3.6), we get the required result. q.e.d.

3.1 Local approximation

For CB [0,∞), let us consider the following K-functional:

K2(f, δ) = inf
g∈W 2

{‖ f − g ‖ +δ ‖ g′′ ‖},

where δ > 0 and W 2 = {g ∈ CB [0,∞) : g′, g
′′ ∈ CB [0,∞)}. By, p. 177, Theorem 2.4 in [2], there

exists an absolute constant M > 0 such that

K2(f, δ) ≤Mω2(f,
√
δ), (3.7)
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where

ω2(f,
√
δ) = sup

0<h≤
√
δ

sup
x∈[0,∞)

| f(x+ 2h)− 2f(x+ h) + f(x) |

is the second order modulus of smoothness of f . By

ω(f, δ) = sup
0<h≤δ

sup
x∈[0,∞)

| f(x+ h)− f(x) |,

we denote the first order modulus of continuity of f ∈ CB [0,∞).

Theorem 2. Let f ∈ CB [0,∞) and n > 3c, we have

| Kα,γn,c,β (f ;x)− f(x) | ≤ Mω2

(
f, ζα,γn,c,β(x)

)
+ ω

(
f, µα,γn,c,β(x)

)
,

where M is a positive constant and

ζα,γn,c,β(x) =

(
ξα,γn,c,β(x) +

(
µα,γn,c,β(x)

)2)1/2

.

Proof. For x ∈ [0,∞), we consider the auxiliary operators Kα,γn,c,β defined by

Kα,γn,c,β(f ;x) = Kα,γn,c,β(f ;x)− f
(
n2x+ α(n− 2c)(1− β)

(n+ γ)(n− 2c)(1− β)

)
+ f(x). (3.8)

From Lemma 2.2, we observe that the operators Kα,γn,c,β are linear and reproduce the linear functions.
Hence

Kα,γn,c,β((t− x);x) = 0. (3.9)

Let g ∈W 2 and x, t ∈ [0,∞). By Taylor’s expansion we have

g(t) = g(x) + (t− x)g′(x) +

∫ t

x

(t− v)g′′(v)dv.

Applying Kα,γn,c,β on both sides of the above equation and using (3.9), we get

Kα,γn,c,β(g;x)− g(x) = Kα,γn,c,β
(∫ t

x

(t− v)g′′(v)dv;x

)
.

Thus, by (3.8) we get

|Kα,γn,c,β(g;x)− g(x)| ≤ Kα,γn,c,β

(∣∣∣∣ ∫ t

x

(t− v)g
′′
(v)dv

∣∣∣∣;x)

+

∣∣∣∣ ∫ n2x+α(n−2c)(1−β)
(n+γ)(n−2c)(1−β)

x

(
n2x+ α(n− 2c)(1− β)

(n+ γ)(n− 2c)(1− β)
− v
)
g
′′
(v)dv

∣∣∣∣
≤

(
ξα,γn,c,β(x) +

(
µα,γn,c,β(x)

)2)
‖ g
′′
‖

≤
(
ζα,γn,c,β(x)

)2
‖ g
′′
‖ . (3.10)
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On other hand, by (3.8) and Lemma 2.3, we have

|Kα,γn,c,β(f ;x)| ≤ ‖ f ‖ . (3.11)

Using (3.10) and (3.11) in (3.8), we obtain
|Kα,γn,c,β(f ;x)− f(x)|

≤ |Kα,γn,c,β(f − g;x)|+ |(f − g)(x)|+ |Kα,γn,c,β(g;x)− g(x)|

+

∣∣∣∣f (n2x+ α(n− 2c)(1− β)

(n+ γ)(n− 2c)(1− β)

)
− f(x)

∣∣∣∣
≤ 2 ‖ f − g ‖ +

(
ζα,γn,c,β(x)

)2
‖ g′′ ‖ +

∣∣∣∣f (n2x+ α(n− 2c)(1− β)

(n+ γ)(n− 2c)(1− β)

)
− f(x)

∣∣∣∣.
Taking infimum over all g ∈W 2, we get

| Kα,γn,c,β(f ;x)− f(x) | ≤ K2

(
f, (ζα,γn,c,β(x))2

)
+ ω

(
f, µα,γn,c,β(x)

)
.

In view of (3.7), we get

| Kα,γn,c,β(f ;x)− f(x) | ≤ Mω2

(
f, ζα,γn,c,β(x)

)
+ ω

(
f, µα,γn,c,β(x)

)
,

which proves the theorem. q.e.d.

3.2 Rate of convergence

Let ωa(f, δ) denote the usual modulus of continuity of f on the closed interval [0, a], a > 0, and
defined as

ωa(f, δ) = sup
|t−x|≤δ

sup
x,t∈[0,a]

|f(t)− f(x)|.

We observe that for a function f ∈ CB [0,∞), the modulus of continuity ωa(f, δ) tends to zero.
Now, we give a rate of convergence theorem for modified Jain-Baskakov-Stancu operators.

Theorem 3. Let f ∈ CB [0,∞) and ωa+1(f, δ) be its modulus of continuity on the finite interval
[0, a+ 1] ⊂ [0,∞), where a > 0. Then, for every n > 3c,

|Kα,γn,c,β(f ;x)− f(x)| ≤ 4Mf (1 + a2)ξα,γn,c,β(x) + 2ωa+1

(
f,
√
ξα,γn,c,β(x)

)
,

where ξα,γn,c,β(x) is defined in Remark 2.4 and Mf is a constant depending only on f.

Proof. For x ∈ [0, a] and t > a+ 1. Since t− x > 1, we have

|f(t)− f(x)| ≤ Mf (2 + t2 + x2)

≤ Mf (t− x)2(2 + 2x+ 2x2)

≤ 4Mf (1 + a2)(t− x)2.
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Approximation by modified Jain-Baskakov-Stancu operators 191

For x ∈ [0, a] and t ≤ a+ 1, we have

|f(t)− f(x)| ≤ ωa+1(f, |t− x|) ≤
(

1 +
|t− x|
δ

)
ωa+1(f, δ), δ > 0.

From the above, we have

|f(t)− f(x)| ≤ 4Mf (1 + a2)(t− x)2 +

(
1 +
|t− x|
δ

)
ωa+1(f, δ),

for x ∈ [0, a] and t ≥ 0. Thus

|Kα,γn,c,β(f ;x)− f(x)| ≤ 4Mf (1 + a2)(Kα,γn,c,β(t− x)2;x)

+ωa+1(f, δ)

(
1 +

1

δ
(Kα,γn,c,β(t− x)2;x)

1
2

)
Applying Cauchy-Schwarz’s inequality, we get

|Kα,γn,c,β(f ;x)− f(x)| ≤ 4Mf (1 + a2)ξα,γn,c,β(x) + 2ωa+1

(
f,
√
ξα,γn,c,β(x)

)
,

on choosing δ =
√
ξα,γn,c,β(x). This completes the proof of theorem. q.e.d.

3.3 Weighted approximation.

Let Cρ be the space of all continuous functions on [0,∞) with the norm ‖ f ‖ρ= sup
x∈[0,∞)

|f(x)|
ρ(x)

and

C0
ρ = {f ∈ Cρ : lim

x→∞

|f(x)|
ρ(x)

<∞}, where ρ(x) is a weight function.

In what follows we consider ρ(x) = 1 + x2.

Theorem 4. If f ∈ C0
ρ , lim

n→∞
βn = 0 and n > 3c, we have

lim
n→∞

‖ Kα,γn,c,βn(f)− f ‖ρ= 0.

Proof. From [3], we know that it is sufficient to verify the following three conditions

lim
n→∞

‖ Kα,γn,c,βn(tr;x)− xr ‖ρ= 0, r = 0, 1, 2. (3.12)

Since Kα,γn,c,βn(1;x) = 1, the condition in (3.12) holds for r = 0.
For n > 2c, we have

‖ Kα,γn,c,βn(t;x)− x ‖ρ = sup
x∈[0,∞)

|Kα,γn,c,βn(t;x)− x|
1 + x2

≤
∣∣∣∣ n2

(n+ γ)(n− 2c)(1− βn)
− 1

∣∣∣∣ sup
x∈[0,∞)

x

1 + x2
+

∣∣∣∣ α

n+ γ

∣∣∣∣ sup
x∈[0,∞)

1

1 + x2
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which implies that lim
n→∞

‖ Kα,γn,c,βn(t;x)− x ‖ρ= 0 with βn → 0.

Similarly, we can write for n > 3c

‖ Kα,γn,c,βn(t2;x) − x2 ‖ρ= sup
x∈[0,∞)

|Kα,γn,c,βn(t2;x)− x2|
1 + x2

≤
∣∣∣∣ n4

(n− 2c)(n− 3c)(n+ γ)2(1− βn)2
− 1

∣∣∣∣ sup
x∈[0,∞)

x2

1 + x2

+

∣∣∣∣ n3 + 2αn2(n− 3c)(1− βn)2

(n− 2c)(n− 3c)(n+ γ)2(1− βn)3

∣∣∣∣ sup
x∈[0,∞)

x

1 + x2
+

α2

(n+ βn)2
sup

x∈[0,∞)

1

1 + x2
,

which implies that lim
n→∞

‖ Kα,γn,c,βn(t2;x)− x2 ‖ρ= 0 with βn → 0.

This completes the proof of theorem. q.e.d.

Now we give the following theorem to approximate all functions in C0
ρ . Such type of results are

given in [4] for locally integrable functions.

Theorem 5. Let βn → 0 as n→∞. For each f ∈ C0
ρ and ϑ > 0, we have

lim
n→∞

sup
x∈[0,∞)

|Kα,γn,c,βn(f ;x)− f(x)|
(1 + x2)1+ϑ

= 0.

Proof. For any fixed x0 > 0,

sup
x∈[0,∞)

|Kα,γn,c,βn(f ;x)− f(x)|
(1 + x2)1+ϑ

≤ sup
x≤x0

|Kα,γn,c,βn(f ;x)− f(x)|
(1 + x2)1+ϑ

+ sup
x≥x0

|Kα,γn,c,βn(f ;x)− f(x)|
(1 + x2)1+ϑ

sup
x∈[0,∞)

|Kα,γn,c,βn(f ;x)− f(x)|
(1 + x2)1+ϑ

≤ ‖ Kα,γn,c,βn(f)− f ‖C[0,x0]

+ ‖ f ‖ρ sup
x≥x0

|Kα,γn,c,βn(1 + t2;x)|
(1 + x2)1+ϑ

+ sup
x≥x0

|f(x)|
(1 + x2)1+ϑ

.

The first term of the above inequality tends to zero from Theorem 3. By Lemma 2.2, for any fixed
x0 > 0, it is easily prove that

sup
x≥x0

|Kα,γn,c,βn(1 + t2;x)|
(1 + x2)1+ϑ

→ 0

as n → ∞ with βn → 0. We can choose x0 > 0 so large that the last part of the above inequality
can be small.
Hence the proof is completed. q.e.d.
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3.4 Pointwise estimates

In this section, we establish some pointwise estimates of the rate of convergence of the operators
Kα,γn,c,β . First, we give the relationship between the local smoothness of f and local approximation.
We know that a function f ∈ C[0,∞) is in LipM (η) on E, η ∈ (0, 1], E⊂ [0,∞) if it satisfies the
condition

|f(t)− f(x)| ≤M |t− x|η, t ∈ [0,∞) and x ∈ E,

where M is a constant depending only on η and f .

Theorem 6. Let f ∈ C[0,∞) ∩ LipM (η), E ⊂ [0,∞) and η ∈ (0, 1]. Then, we have

|Kα,γn,c,β(f ;x)− f(x)| ≤ M

((
ξα,γn,c,β(x)

)η/2
+ 2dη(x,E)

)
, x ∈ [0,∞),

where M is a constant depending on η and f and d(x,E) is the distance between x and E defined
as

d(x,E) = inf{|t− x| : t ∈ E}.

Proof. Let E be the closure of E in [0,∞). Then, there exists at least one point x0 ∈ E such that

d(x,E) = |x− x0|.

By our hypothesis and the monotonicity of Kα,γn,c,β , we get

|Kα,γn,c,β(f ;x)− f(x)| ≤ Kα,γn,c,β(|f(t)− f(x0)|;x) +Kα,γn,c,β(|f(x)− f(x0)|;x)

≤ M
(
Kα,γn,c,β(|t− x0|η;x) + |x− x0|η

)
≤ M

(
Kα,γn,c,β(|t− x|η;x) + 2|x− x0|η

)
.

Now, applying Hölder’s inequality with p =
2

η
and q =

2

2− η
, we obtain

|Kα,γn,c,β((f ;x)− f(x)| ≤M
(
{Kα,γn,c,β(|t− x|2;x)}η/2 + 2dη(x,E)

)
,

from which the desired result immediate. q.e.d.

Next, we obtain the local direct estimate of the operators defined in (1.4), using the Lipschitz-
type maximal function of order η introduced by B. Lenze [12] as

ω̃η(f, x) = sup
t6=x, t∈[0,∞)

|f(t)− f(x)|
|t− x|η

, x ∈ [0,∞) and η ∈ (0, 1]. (3.13)

Theorem 7. Let f ∈ CB [0,∞) and 0 < η ≤ 1. Then, for all x ∈ [0,∞) we have

|Kα,γn,c,β(f ;x)− f(x)| ≤ ω̃η(f, x)
(
ξα,γn,c,β(x)

)η/2
.
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Proof. From the equation (3.13), we have

|Kα,γn,c,β(f ;x)− f(x)| ≤ ω̃η(f, x)Kα,γn,c,β(|t− x|η;x).

Applying the Hölder’s inequality with p =
2

η
and q =

2

2− η
, we get

|Kα,γn,c,β(f ;x)− f(x)| ≤ ω̃η(f, x)Kα,γn,c,β((t− x)2;x)
η
2 ≤ ω̃η(f, x)

(
ξα,γn,c,β(x)

)η/2
.

Thus, the proof is completed. q.e.d.

Let us consider the Lipschitz-type space with two parameters [25]:
For a, b > 0, we define

Lip
(a,b)
M (η) =

(
f ∈ C[0,∞) : |f(t)− f(x)| ≤M |t− x|η

(t+ ax2 + bx)η/2
; x, t ∈ [0,∞)

)
,

where M is any positive constant and 0 < η ≤ 1.

Theorem 8. For f ∈ Lip(a,b)M (η). Then, for all x > 0, we have

|Kα,γn,c,β(f ;x)− f(x)| ≤M

(
ξα,γn,c,β(x)

ax2 + bx

)η/2
.

Proof. First we prove the theorem for η = 1. Then, for f ∈ Lip(a,b)M (1), and x ∈ [0,∞), we have

|Kα,γn,c,β(f ;x)− f(x)| ≤ Kα,γn,c,β(|f(t)− f(x)|;x)

≤ MKα,γn,c,β

(
|t− x|

(t+ ax2 + bx)1/2
;x

)
≤ M

(ax2 + bx)1/2
Kα,γn,c,β(|t− x|;x).

Applying Cauchy-Schwarz inequality, we get

|Kα,γn,c,β(f ;x)− f(x)| ≤ M

(ax2 + bx)1/2

(
Kα,γn,c,β((t− x)2;x)

)1/2
≤ M

(
ξα,γn,c,β(x)

ax2 + bx

)1/2

.

Thus the result holds for η = 1.

Now, we prove that the result is true for 0 < η < 1. Then, for f ∈ Lip(a,b)M (η), and x ∈ [0,∞), we
get

|Kα,γn,c,β(f ;x)− f(x)| ≤ M

(ax2 + bx)η/2
Kα,γn,c,β(|t− x|η;x).
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Taking p = 1
η and q = 2

2−η , applying the Hölders inequality, we have

|Kα,γn,c,β(f ;x)− f(x)| ≤ M

(ax2 + bx)η/2

(
Kα,γn,c,β(|t− x|;x)

)η
.

Finally by Cauchy-Schwarz inequality, we get

|Kα,γn,c,β(f ;x)− f(x)| ≤ M

(
ξα,γn,c,β(x)

ax2 + bx

)η/2
.

Thus, the proof is completed. q.e.d.

4 King’s approach

To make the convergence faster, King [11] proposed an approach to modify the classical Bernstein
polynomial, so that the sequence preserve test functions e0 and e2, where ei(t) = ti, i = 0, 1, 2.
After this approach many researcher contributed in this direction.
As the operator Kα,γn,c,β(f ;x) defined in (1.4) preserve only the constant functions so further mod-
ification of these operators is proposed to be made so that the modified operators preserve the
constant as well as linear functions.
For this purpose the modification of (1.4) is defined as

K̂α,γn,c,β(f ;x) =
(n− c)
n

∞∑
v=1

ωβ(v, nrn(x))

∫ ∞
0

pn,v−1,c(t)f

(
nt+ α

n+ γ

)
dt+ e−nrn(x)f

(
α

n+ γ

)
(4.1)

where rn(x) = (n−2c)(1−β)((n+γ)x−α)
n2 and x ∈ In = [ α

n+γ ,∞).

Lemma 4.1. For every x ∈ In, we have

1. K̂α,γn,c,β(1;x) = 1;

2. K̂α,γn,c,β(t;x) = x;

3. K̂α,γn,c,β(t2;x) =
(n− 2c)

(n− 3c)
x2 +

n− 2cα(1− β)2

(n− 3c)(n+ γ)(1− β)2
x+

cα2(1− β)2 − nα
(n− 3c)(n+ γ)2(1− β)2

.

Consequently, for each x ∈ In, we have the following equalities

K̂α,γn,c,β(t− x;x) = 0

K̂α,γn,c,β((t− x)2;x) =
c

(n− 3c)
x2 +

n− 2cα(1− β)2

(n− 3c)(n+ γ)(1− β)2
x+

cα2(1− β)2 − nα
(n− 3c)(n+ γ)2(1− β)2

= λα,γn,c,β(x), (say). (4.2)
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Theorem 9. For f ∈ CB(In) and n > 3c, we have

|K̂α,γn,c,β(f ;x)− f(x)| ≤M ′ω2

(
f,
√
λα,γn,c,β(x)

)
,

where λα,γn,c,β(x) is given by (4.2) and M ′ is a positive constant.

Proof. Let g ∈W 2 and x, t ∈ In. Using the Taylor’s expansion we have

g(t) = g(x) + (t− x)g′(x) +

∫ t

x

(t− v)g′′(v)dv.

Applying K̂α,γn,c,β on both sides and using Lemma 4.1, we get

K̂α,γn,c,β(g;x)− g(x) = K̂α,γn,c,β

(∫ t

x

(t− v)g′′(v)dv;x

)
.

Obviously, we have

∣∣∣∣∫ t

x

(t− v)g′′(v)dv

∣∣∣∣ ≤ (t− x)2‖g′′‖.

Therefore

| K̂α,γn,c,β(g;x)− g(x) |≤ K̂α,γn,c,β((t− x)2;x) ‖ g′′ ‖= λα,γn,c,β(x) ‖ g′′ ‖ .

Since | K̂α,γn,c,β(f ;x) |≤ ‖f‖, we get

| K̂α,γn,c,β(f ;x)− f(x) | ≤ | K̂α,γn,c,β(f − g;x) | + | (f − g)(x) | + | K̂α,γn,c,β(g;x)− g(x) |
≤ 2‖f − g‖+ λα,γn,c,β(x)‖g′′‖.

Finally, taking the infimum over all g ∈W 2 and using (3.7) we obtain

| K̂α,γn,c,β(f ;x)− f(x) |≤M ′ω2

(
f,
√
λα,γn,c,β(x)

)
,

which proves the theorem. q.e.d.

Theorem 10. Let b > 0 and βn ∈ (0, 1) such that nβn → l ∈ R as n → ∞. Then for every

f ∈ CB
[

α
n+γ , b

]
, f ′, f ′′ exists at a fixed point x ∈

(
α

n+ γ
, b

)
, we have

lim
n→∞

n
(
K̂α,γn,c,βn(f ;x)− f(x)

)
=
x(1 + cx)

2
f ′′(x).

The proof follows along the lines of Theorem 1.
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